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We continue our study of the behavior of the two-dimensional nearest neighbor 
ferromagnetic Ising model under an external magnetic field h, initiated in our 
earlier work. We strengthen further a result previously proven by Martirosyan 
at low enough temperature, which roughly states that for finite systems with 
(-)-boundary conditions under a positive external field, the boundary effect 
dominates in the system if the linear size of the system is of order B/h with B 
small enough, while if B is large enough, then the external field dominates in the 
system. In our earlier work this result was extended to every subcritical value 
of the temperature. Here for every subcritical value of the temperature we show 
the existence of a critical value Bo(T) which separates the two regimes specified 
above. We also find the asymptotic shape of the region occupied by the 
(+)-phase in the second regime, which turns out to be a "squeezed Wulff 
shape." The main step in our study is the solution of the variational problem of 
finding the curve minimizing the Wulff functional, which curve is constrained to 
the unit square. Other tools used are the results and techniques developed to 
study large deviations for the block magnetization in the absence of the 
magnetic field, extended to all temperatures below the critical one. 
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INTRODUCTION 

In this paper we continue our studies of applications of variational 
techniques to the investigation of the qualitative behavior of the two- 
dimensional Isi'ng model below the critical temperature in the presence of 

i Mathematics Department, University of California at Los Angeles, Los Angeles, California 
90024. 

2 Mathematics Department, University of California at Irvine, Irvine, California 92717, and 
Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 
Russia. 

867 

0022-4715/96/0600-0867509.50/0 ~ 1996 Plenum Publishing Corporation 



868 Schonmann and Shlosman 

a magnetic field, initiated in ref. 17. The model is defined on 7/-" by the 
formal Hamiltonian 

h 
1 ,.~ cr(x) c r ( . V ) - ~ ' ~ ( x )  (1.1) N j , ( G )  = - 

. x ' , .  ' . n .  . \ "  

where e ( x ) =  _+ 1 is the spin at the site x e  Z 2, and the first sum runs over 
pairs of sites which are nearest neighbors in 7/2, each pair counted only 
once. 

Two key ideas were crucial in ref. 17: 

�9 The study of typical behavior of the Ising model in the magnetic 
field can be reduced to the study of large-deviation behavior of the Ising 
model without magnetic field (since by considering nonzero magnetic field 
we obtain what is called the "tilted distribution" in the theory of large 
deviations). 

�9 The "typical large-deviation configurations" are described geometri- 
cally as the configurations of phase coexistence where one phase forms a 
droplet floating inside the other, with the shape of the droplet determined 
by the Wulff variational construction. 

The second has been known for some time, restricted, however, to the 
range of low temperaturesJ 7~ The possibility of extending it to all tem- 
peratures below the critical one is due to recent results by Ioffe, I'~ ~ who 
built also on previous work by Alexander et al., ~2~ Pfister, ~31 and 
Pisztora.' ~4j 

In the present paper we apply these ideas to the following problem: 
consider the Ising model in the presence of posi t ive  magnetic field h in a 
square box A( I )  of size / with negat ive  boundary conditions (b.c.). We want 
to study the result of competing influences of the positive field and the 
negative b.c. on the Ising system. To give each of the contenders a 
comparable chance to influence the system, we have to impose the relation 

12h ~ 1 

(since in two dimensions the volume of the system is / 2, while the boundary 
has length of the order of l). That means that a reasonable choice is 

I = B/h  

with B a constant. To see a sharp transition, one has then to pass to the 
thermodynamic limit of the infinite volume, which in our case amounts to 
taking h to 0. The question then is: how does the limiting behavior of the 
system depend on the parameter B? 
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Partial answers to this question have been known for some time. Mar- 
tirosyan showed that at low temperatures T and with B > BI(T) one would 
see the (+) -phase  in the central part of the box A(B/h) as h~O (see 
Theorem 1 in ref. 12, which covers the case of arbitrary dimension d). 

Martirosyan's result was reproven in ref. 15 with somewhat simpler 
methods in arbitrary dimension and with greatly simplified methods in two 
dimensions. It was also proven there that for some other value B2(T)<  
B~(T) and for B<B2(T) one would obtain in the limit the ( - ) -phase ;  the 
proof  given in ref. 15 also implies that the functions B~(T) and B2(T) can 
be taken arbitrarily close to the common value 2d, provided the tem- 
perature is low enough. In ref. 17 this result was extended up to T,. in the 
two-dimensional case. 

The aim of the present paper is to strengthen these results further in 
the d = 2  case. Namely, we will show that there exists a unique function 
Bo(T) which represents a sharp border between these two behaviors: in the 
above statements one can use the same function Bo(T) instead of both 
BI(T) and B2(T). In Theorem 1 of ref. 17 the same result was obtained for 
the case of the box having the Wulff shape, corresponding to the tem- 
perature T. That result might appear somewhat artificial because of the 
extravagant choice of the shape of our box; it turns out, however, that 
the case of the Wulff-shaped box was singled out as the one which leads to 
the usual (unconstrained) Wulff variational problem, while all other cases 
require for their analysis information about certain constrained variational 
problems. Another important difference between the cases of the Wulff- 
shaped box and the square box is that for any value of B > Bo(T), however 
large, a certain positive fraction of the square box A(B/h) will be occupied 
with the ( - ) -phase ,  which is not the case for the Wulff-shaped box. The 
Wulff-shaped boxes, while artificial as objects of interest for their own 
right, proved nevertheless to be good enough tools to obtain the result 
stated in the title of ref. 17: namely, that complete analyticity for nice boxes 
holds everywhere in the interior of the uniqueness region in the phase 
diagram of the model. The analysis of the behavior in the square boxes was 
postponed to the present paper because it requires a substantial amount of 
extra work. 

The variational problem that we have to solve here is the following 
constrained Wulffproblem: we want to find the shape of a droplet with a 
given volume (area in 2D) which minimizes the boundary surface tension, 
under the additional restriction that the shape sought has to fit inside a 
given box. For  the Wulff-shaped box the answer is evident: it has to be the 
Wulff shape itself. For boxes of different geometry the answer is not so simple. 
The solution, as a function of the droplet volume, might exhibit singularities, 
and these singularities make the behavior of the model interesting. 
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2. N O T A T I O N  A N D  T E R M I N O L O G Y  

The lattice and the apace: The cardinality of a set F c Z  2 will be 
denoted by If'[. The expression / ' c o  Z z will mean t h a t / "  is a finite subset 
of 7/2. Likewise the area (or the volume) of the measurable set G c ~2 will 
be denoted by [GI. I f g = O G  is the boundary of the set G, then we use V(g) 
to denote the volume inside g: 

V(g) = V(OG)= IGI (2.1) 

For  each x E 7/2, we define the usual norms [Ixllp = (Ix) 1" + Ix2 I P) ~/p, p > 0 
finite, and I lx l l~=max{lx l l ,  lxz[}. The distance between two sets 
A, B ~ Z -~ in each one of these norms will be denoted by 

distp(A, B) = inf{ [Ix - )'lip: x ~ A, 3' ~ B} 

In the case A = {x}, we also write distp(A, B) = distr(x, B). For two bounded 
subsets F, G c R-' we define the Hausdorff distance between them as 

p , (F ,  G)= max{inf{e: F c  U,(G)}, inf{e: G c  U,(F)} } 

where U~(.) stands for (Euclidean) e-neighborhood. 
The interior and exterior boundaries of a set F ~  7/2 will be denoted, 

respectively, by 

0int/"~- {XE/": IIx-Yll~ = 1 for some y C F }  

and 

Oex, F= {x r F: IIx - YlI~ = 1 for some y E F} 

We denote by S(I) the square in lt~ 2 with side/,  centered at the origin: 

S( I ) = [ - l / 2 , / / 2 ]  2 

For lattice squares centered at the origin, we will use the notation 

A(I) = 7/2 c~ S(I) 

The set of bonds, i.e. (unordered) pairs of nearest neighbors, is defined as 

B =  {{x, y}: x, yE Z2 and I Ix -y l l ,  = I} 

Given a set F c c  Z 2 we define also 

B r =  {{x, y}: x, y s r a n d  I I x -  Yllt = 1} 

OBr= {{x, y}: x s F ,  yCF,  and I Ix -  Yll, = 1} 

(2.2) 

(2.3) 

(2.4) 
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and 

B r = { { x , y } : x E F ,  y~Z'-,and I I . u  (2.5) 

Notions from percolation: A chain is a sequence of distinct sites 
x~ ..... x,,, with the property that for i =  1 ..... n - -  1, Ilxi-x,+l I1~ = 1. The 
sites x I and x ,  are called the endpoints of the chain x I ..... x , ,  and n is its 
length. A (*)-chain, its endpoints, and its length are defined in the same 
way, but with I1" Ill replaced by II-Ir ,.- Informally this means that while 
chains can only move along bonds of 7 2 , (*)-chains can also move along 
diagonals. A chain or (*)-chain is said to connect two sets if it has one 
endpoint in each set. A circuit is a chain such that Ilx~ - x ,  Ill = 1. Similarly 
a (*)-circuit is a (*)-chain such that [ I x l -  x,, [I ~ = 1. 

The configurations and observables: At each site in 7/-" there is a spin 
which can take values - 1  and + 1. The configurations will therefore be 
elements of the set { - 1 ,  + l} z- '=f2. Given a s f 2 ,  we write a(x) for the 
spin at the site x E 77-'. Two configurations are especially relevant, the one 
with all spins - 1  and the one with all spins + 1. We will use the simple 
notation ( - )  and ( + )  to denote them. The single spin space { - 1 ,  + 1 } is 
endowed with the discrete topology and g? is endowed with the corre- 
sponding product topology. The following definition will be important  
when we introduce finite systems with boundary conditions later on; given 
F~c7/2 and a configuration q ~I2, we introduce 

f2r.,l = {a~g2: a(x)=ll(x) for all xCF} 

Real-valued functions with domain in f2 are called observables. For  
each observable f ,  we use the notation [[fl[ .~_ = sup,l+ ~ [f(Pl)[. Local observ- 
ables are those which depend only on the values of finitely many spins, 
more precisely, f : / 2  ~ R is a local observable if there exists a set S c c  7/2 
such that f ( a )  =f ( t / )  whenever a(x) = q(x) for all x e S. The smallest S with 
this property is called the support o f f ,  denoted supp(f ) .  The topology 
introduced above o n / 2  has the nice feature that it makes the set of local 
observables be dense in the set of all continuous observables. 

We introduce the notation O.,.(f) for the translate by x e T/2 of the 
function f ,  i.e., (O,-(f))(a) =.f(O_*.(a)), with O.*(a)(y) = a(y + x). 

For the average spin in a set F c c  7/'- we will use 

1 
Xr(c r )=- -  ~ cr(x) 

Irl .,.+,- 

In f2 the following partial order is introduced: 

~/~<( if rl(x)<~((x) for all x~7 /  
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The probability measures: We endow g2 also with the Borel a-algebra 
corresponding to the topology introduced above. In this fashion, each 
probability measure p in this space can be identified by the corresponding 
expected values I f d p  of all the local observablesf  A sequence of probability 
measures, (p,,), = t. 2.... is said to converge weakly to the probability measure 
v in case 

, l im I f d l , , ,=  f f d v  for every continuous observable f (2.6) 

The family of probability measures on s will be partially ordered by the 
following relation: p ~< v if 

f f d p  <~ f f d v  for every continuous nondecreasing observable f (2.7) 

Because the local observables are dense in the set of continuous observables, 
we can restrict ourselves to the local ones in (2.6) and (2.7). 

The Gibbs measures: We will consider always the formal Hamiltonian 
(1.1). In order to give precise definitions, we define, for each set F c c Z ' -  
and each boundary condition r/e s 

1 
Hr.,1. h(a)= - -  I ...... ' l t a r  I ...... 'l~0ar 

yCF 

h 
-5  S a(x) (2.8) 

x ~ F  

where h c R is the external field and a e f2 is a generic configuration. 
Given F c c  7/2, q e g2 and E ~  f2, we write 

Zr.,. r./,(E) = ~ exp( - - f lHr . , i . l , (a ) )  
r~S'2F, qnE 

where fl = 1/T. We abbreviate Zr.  ,i. r. h = Zr.  ,~. r. h(f2). 
The Gibbs (probability) measure in F with boundary condition q 

under external field h and at temperature T is now defined on s as 

exp( - flHr-' 'U'(a)) if a c ~ r  

p r. ,1. r, h( a ) = l O Z r. ,1. r. h otherwise ,,1 
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The Gibbs measures satisfy the following monotonic i ty  relations, to 
which we will refer as the F K G - H o l l e y  inequalities: 

If  i/~<~, T I > ~ T 2 ,  and h l<~h2 ,  then for each F c c Z  2, / t r .~ . r , .h ,<~ 

/tr.c., T2 ,  h 2 �9 

A Gibbs measure for the infinite system on 77"- is defined now as any 
probabil i ty measu re / t  which satisfies the D L R  equat ions in the sense that 
for every F c ~  772 and / t - a lmos t  all ~/E s 

i t ( .  l s r. ,fl = /t r. ,l. r. h( . ) (2.9) 

Alternatively and equivalently, Gibbs measures can be defined as elements 
of  the closed convex hull of  the set of  weak limit points of  sequences of  the 
form (/tr,.,,i. r.h)i=*.2 ..... where each Fi is finite and F;--+ 7/2, as i--+ oo, in 

~" F 772. the sense that  U;=~NjL-s j =  
Fo r  each value of  T and h, /ta~/~, - .  r, /, (resp., /tA~t~, +. r,h) converges 

weakly, as l--+ o0, to a probabil i ty measure that we will denote b y / t _ ,  7-, h 
( resp., /t +, 7-, h). I f  h :/= 0, it is known t h a t / t  - .  7-, h = / t  +, r, h, which will then 
be denoted simply by /tr.h; it is also known that  this is the only Gibbs 
measure for the infinite system in this case. If  h = 0, the same is true if the 
temperature is larger than or  equal to a critical value 7",. > 0, and is false 
for T <  T,., in which case one says that there is phase coexistence. 

We use the following abbreviat ions and names: 

/t - .  7-. o := / t  - .  r = the minus phase = the ( - )-phase 

/t +. r. o := / t  +. r = the plus phase = the ( + )-phase 

For  the expected value corresponding to a Gibbs measure/ t . . ,  in finite 
or infinite volume we will use the nota t ion 

( f ) . . .  = I f d/t . . .  

where the dots stand for arbi t rary subscripts. The spontaneous  magnetiza- 
tion at temperature T is defined as 

m ~ - =  (a(O)) +. r 

(Here we are using a c o m m o n  and convenient  form of  abuse of  notat ion:  
~r(x) is being used to denote the observable which associates to each 
configuration the value of  the spin at the site x in that configuration. This 
notat ion will also be used in other places.) It is known that m * >  0 if and 
only if It _.  r r  +, T. 

822/83/5-6-6 
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Surface tension and Wulff shape: The direction-dependent surface 
tension is defined in the following way. First consider on R 2 x R 2 the usual 
inner product (x, 3') =xlyl +x2y2. Let S I = {x~ R2:Ilxl12 = 1},  and for 
each vector n ~ S ~, consider the following configuration, to be used as a 
boundary condition: 

= , ~ + 1  if (x ,n)> /0  
q(n)(x) 

- 1  if (x, n) < 0  

The surface tension in the direction perpendicular to n is given by 

~r(n) = lim _ 1 _z(l)il~_logZA.l,,lc.l. 7-.o 
/ -  ~_ Z~ liY(1) ZA.>. +. T. 0 

where y(l) and z ( / ) = - y ( l )  are the points where the straight line 
{x~ R2: (x, n ) = 0 }  intersects the boundary of the square A(I). It is known 
that for each T <  T,. the surface tension r r ( . )  is a continuous strictly 
positive and finite function. 

Some results below are valid for the general surface tension function 
r(. ). We will denote the corresponding quantities by the subscript z. When 
we will talk about the Ising model quantities, we will use the subscript T 
instead of the full subscript r r .  

About the general surface tension function r(n) we suppose that it is 
symmetric with respect to the reflections in coordinate axes, that r(x, y ) =  
r(y, x), and that it satisfies the Sharp Triangle Inequality [see (2.20.1) of 
ref. 7: 

[ABI r(nAB) + ]BC[ r(nsc) > [AC[ r(nAc) (2.10) 

where, for any triangle ABC on I~ 2, [AB[, [BC[, and [AC] are the lengths 
of its sides and nan, nsc, and nAc are unit vectors orthogonal to the corre- 
sponding sides, the first two oriented toward the interior of the triangle, 
while the third one is oriented outside the triangle. This last property 
follows from the stiffness positivity condition: 

r(n) + r"(n) > 0. (2.11 ) 

In fact, the infinitesimal version of the inequality (2.10) will give the last 
inequality (of course, with /> instead of > ), so (2.10) follows from (2.11) 
by integration. It follows from the exact expression for the stiffness coef- 
ficient in the lhs of (2.11 ), obtained in ref. I, that stiffness positivity holds 
for the 2D Ising model at any temperature below the critical one. The func- 
tion vr  has also the above-mentioned symmetry properties. 
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We shall use ~ to denote the set of all closed self-avoiding rectifiable 
curves y �9 R 2 that are a boundary of a bounded region, y =OV, V c  N2. Let 
us recall that a curve is called rectifiable if the supremum of the lengths of 
polygons, with edges connecting sequentially arbitrary collections of points 
chosen on the curve, is finite (and equals then the length of the curve), and 
that a rectifiable curve has a tangent at almost every point. It is easy to 
verify that a curve 7 that is the boundary of a convex bounded region 
belongs to N. We can assign to each curve y �9 ~ the quantity 

/r = r162 = I), r(n.,.) ds (2.12) 

where s parametrizes the curve y according to Euclidean length measured 
along this curve, and n.,. is the unit outward normal vector to the curve at 
the point s � 9  ? (i.e., the vector orthogonal to the tangent in the considered 
point and oriented outward from the region bounded by y). The functional 
'1.~ will be called the Wulff functional associated to the surface tension 
function r(. ). Sometimes we will refer to it also as the integrated surface 
tension. In the isotropic case when r = 1, the corresponding Wulff func- 
tional is just the Euclidean length of the curve y; it will be denoted by I)'1. 
The temperature-T Ising-model Wulff functional will be denoted by '~Y'r, 
according to our convention. 

To every vector n �9 ~1 and 2 > 0 we assign the half-plane 

L .. . .  ~, = {x �9 R2: (x, n) -%< At(n)} 

Let us consider the intersections 

W~,,~= 0 L .... ~, (2.13) 
n ~ . ~  I 

These sets clearly satisfy the scaling relation W~. 2 = 2 W~, 1. In particular 
they keep the same shape as 2 varies; this shape is called the Wulffshape. 
The parameter 2 will be called the radius of the Wulff shape. The Wulff 
body is defined as W~ = W~, ;,0, where the radius 20 = ;to(r) is chosen so that 
its volume is 1. W'~ is clearly convex and thus its boundary 0 W~ �9 ~.  The 
following is therefore well defined: 

w~ = ~ ( a  w~) 

For each r, the boundary of the Wulff body satisfies the following varia- 
tional principle. For  all y �9 ~ which are boundaries of regions of volume 1, 
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with equality only in case y is a translation of OW~. The curve y~ = 0 W~ will 
be called the Wulff curve corresponding to the function r. 

We define the width l~ of the Wulff curve y~ to be the length l of the 
side of the smallest square S(I) into which the curve y~ can fit. In our case, 
when the function r(n) is symmetric with respect to the reflections in coor- 
dinate axes, and also r(x, y ) = r ( y ,  x), the width l~ is given by 

4•  13=-- (2.14) 
~r 

where the quantity f is given by 

g=  r(O, 1) (2.15) 

The relation (2.14) follows from convexity and symmetry of y~ and from 
the relation (2.7.6) of ref. 7. The quantity f happens to be equal to one-half 
of the width of the Wulff shape W~, ~ of radius one. 

3. M A I N  RESULT 

In this section we will formulate the main result of the present paper, 
Theorem 2 below, which states the existence of the threshold value Bo(T) 
such that if the size l of our box A(I) is less than Bo/h, than for small h we 
are in the ( - ) -phase ,  while if it is bigger than Bo/h, than we are 
predominantly in the (+)-phase.  We start with the heuristic calculation of 
what the critical value Bo(T) should be, since it is entering in the formula- 
tion of Theorem 2. 

To do the calculation, we need to know the shape of the droplet of the 
(+) -phase  which would develop in a system mixed from ( + ) -  and ( - ) -  
phases, provided the (+) -phase  occupies a given fraction ~ of the total 
volume, and the whole zero-field system is constrained to the square box 
with ( - ) -b . c .  Let us scale down the whole picture in such a way that the 
square box would be a 1 by 1 square. As we shall learn from Lemma 1 
below, the resulting droplet yr(~) (of volume ~) has the following shape: 
(i) the usual Wulff shape, ~'/2y T, provided it can fit the square box; (ii) the 
squeezed Wulffshape otherwise. The latter can be obtained from the square 
by rounding off its four corners in such a way, that each rounded part is 
congruent to one quarter of the (same) Wulff shape, see Fig. 1 below. Note 
that the resulting curve yr(~) is smooth, and consists of four segments and 
four quarters of the curve 

(1 _~)i/2 
IT(1 --/r-) 1/2 YT 
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The proof of that statement will be given in the next section; here we 
explain the heuristic behind it. 

H e u r i s t i c  Proof .  To get an idea of how the sought curve has to look, 
the following picture is helpful. (It corresponds to the case of isotropic 
surface tension.) Consider a (one-dimensional) balloon, placed inside a box 
S(1), which starts to be pumped. At first it is not touching the walls, 
and so it is not different from the unconstrained shape, which is, of course, 
a circle in the isotropic case. At some moment, however, it starts to touch 
the walls, and from that moment on a part of its surface is pressed flat 
against them. Since the pressure inside the balloon stays constant over its 
entire interior, the balloon's curvature at any point where it does not touch 
the wall has to be the same, being proportional to the pressure. That means 
that the free surface of the balloon is that of a part of a circle. Since at any 
moment the pumping can be stopped and the balloon would then rest, its 
surface has to have no corners; otherwise the corner point has to move, 
being subjected to the two surface tension forces which add to nonzero 
resultant force. Hence each curved part of our curve is congruent to one- 
quarter of a circle, i 

The curves described above specify the asymptotic shape of the bubble 
of the (+) -phase  over the background of the ( - ) -phase .  It is well known 
that the probability to observe such a bubble is of the order of the 
exponential of the surface tension along its boundary times the inverse 
temperature. With such a picture in mind, the following result should not 
be a surprise. 

Theorem 1.  Suppose that T < T , .  and let - l < ~ m ~ < n l 2 < < . + l ;  
then 

where 

and 

lim - ~ log P.., t~. - .  T. o( X , ,  I~ ~ (1711,//12)) = 

r = ~/~*'r 
L+ov  

inf ~(m) (3.1) 
I~; E ( m  I , m 2 )  

if 177 ~ [ - m * ,  + m * ]  
(3.2) 

otherwise 

in + m* 
~ ( m )  - - -  

2m~ 

The function co(m) above gives the relative volume of the droplet of the 
(+)-phase  on the background of the ( - ) -phase ,  such that the resulting 
magnetization of the system is m. 
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The theorem just stated extends the results obtained recently by 
Ioffe. ~1~ ~JJ The difference lies in the fact that we are interested here in all 
values ml,  m_,, and not just in those close to - m * .  Hence we have to look 
for the solution of the constrained Wulff problem, with squeezed Wulff 
shape to enter in the statement of the theorem. Ioffe's proofs need some 
modifications to work in our case, and we present them in Section 7. 

The function q/(m) given by (3.2) appeared in ref. 16, though there it 
was written less explicitly. The context of ref. 16 was somewhat different: 
there the question of large deviation was studied on the (more precise) level 
of the local limit theorem at low temperatures, while (3.1) is a statement 
about large deviation on the level of the integral limit theorem, valid, 
though, for all temperatures below the critical. The statement made in 
ref. 16 about the asymptotic shape of the droplet of the (+)-phase in the 
box with ( - )  boundary condition is erroneous; the correct shapes are 
given by the curves )'r(O~). The low-temperature results of ref. 16 for 
periodic and free boundary conditions can be extended with some extra 
work to all temperatures below the critical, again at the price of going to 
the level of the integral limit theorem. They will be subject of a forthcoming 
publication by Cesi et al. ~6~ The proof of the Theorem 1 will be given in 
Section 7. 

To proceed, we need to know the value of the Wulff functional 
~lr of the shape yr(0~) as a function of the volume ~ it occupies in 
the box S(1). For ~ < l r ' -  we have yr(O~)=~my r, and so 

"[//'T( )) T(  OL } ) = O~ I/21'I' T (3.3) 

For the remaining values of ~ a direct calculation gives the formula 

(1 _ ~)1/2 
"~t/r(Yr(~))=4fr ( l _ i r 2 ) l / 2 ( 4 f r  l r l w r )  

= 4 f r - -  ( 1 --c~) I/'- (16f r - w?-)"l/'- 

where in the last step we used the identity (2.14). The function 'r162 
is concave for 0~<~</r - ' ,  is convex for lr2~<c~< 1, and is smooth 
everywhere on [0,1] (its derivative at the inflection point e =  lr'- is equal 
to 2fr). See Fig. 1 for the graph of this function. 

Accepting the above droplet picture, we can now calculate the free 
energy of a system of size B/h in .a positive magnetic field h under the 
condition that it has a droplet of ( + )-phase of relative volume c~, as a func- 
tion of e, and then look for its minimum. If the minimum is attained at 

= 0, then the system prefers to stay in the ( -)-phase;  otherwise there has 
to be a droplet o f (+ ) -phase  occupying the central part of our box. The 
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Fig. 1. Graph of #r(~,r(~)) and various shapes 7T(~). 

key observation is that if the relative volume ~ of ( + )-phase--and thus the 
total magnetization--is fixed, then the conditional Gibbs distribution is not 
affected by the presence of the magnetic field, and so the droplet picture 
has to be the same as in the zero-field case. Without a magnetic field the 
free energy of the system [calculated with respect to the level of ( - ) -  
phase ] comes only from the presence of the interface, and the minimal cost 
our system can pay for having an interface surrounding the relative volume 

is given by 

B 

The positive magnetic field favors the (+)-phase,  and the energy reward 
the system gets after the field is turned on is given by 

2] 
- / i 'm*h r ~ = - fin,*cr B-'h 

The above ~peculations tell us to look for the minima of the function 
(see Fig. 2) 

g(~, B) = '#/V(yT(O0 ) B -- m T o c B  - 

For B small it has exactly one minimum at ~ = 0 (which is a local minimum 
for all B). After the threshold B = 2 f T / m *  [at  which value of B the function 
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g(a) 
B small 

B=]~ (T) 

B>E~ (T) 

Fig. 2. Graphs ofg(e, B) for different B. 

g(e, B) has zero derivative at the inflection point] ,  a second local minimum 
appears at the point 

16r?--  w?- 
o: B = 1 4 ( B i n , )  z 

The value g(0c B, B) is decreasing in B, and we are interested in the value of 
B for which 

g(es,  B ) = 0  (3.4) 
The solution of that equation is the critical value Bo(T) we are looking 

for. Indeed, for smaller values of B the system prefers to be near the value 
c~ = 0, which is then the global minimum of the function g(e, B), while for 
bigger values of B the global minimum is attained at ~B. The solution to 
Eq. (3.4) is given by the formula 

4 f T +  W T 
B0(T) 

2m~- 

The corresponding value of 0cB o is given by 

4 f  T -  w T 
~Bo= 1 

4f  r + w r 

The corresponding (smallest) curve ?r(es0), which gives the shape of the 
(+) -phase  droplet, does have flat pieces along the boundary--which does 
not come as a surprise, since otherwise the droplet would have been able 
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to appear at lower values of B; the length of the corresponding four 
straight segments of yr(aBo) is given by 

W T 

4"?r + W T 

The reader would guess correctly that the curves ?r(~), which have shorter 
length of the flat parts of the boundary are not observed in the Ising system 
regardless of the parameter B (and the theorem below confirms this guess). 
For B>  B0 the mean magnetization of our system is given by (see Fig. 3) 

16f~--,v~- 
roT(B) = m* 2B2m~. (3.5) 

This function goes asymptotically to m* as B ~ ~ .  When B ~ Bo, the mean 
magnetization goes to 

mT(Bo)=m*(1--2 4~r--wr~ 
4 f r +  WT/ (3.6) 

while for B<Bo we have mr(B)= --m*. 
One would expect the expression (3.6) to be positive, since the corre- 

sponding droplet touches the walls of the box, and therefore it occupies 
more than half of the box (by convexity and symmetry). Positivity boils 
down to the inequality 

3wr> 4f r  (3.7) 

This inequality is indeed correct. To see it, observe, that the r.h.s, is the 
value of the Wulff functional calculated for the boundary of the unit 

mT(B) 

Fig. 3. Graph ofmr(B). 
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square. The width of the Wulff body of unit volume W r is larger than 1, 
hence the magnified body 3 W r  contains the unit square, and that proves 
(3.7) by the triangle inequality. 

Now we can formulate our main result. 

Then: 

a.  

1. 

Theorem 2. Suppose that T <  T,. is fixed and define 

B o  = B o ( T )  - - -  

. 

that x(h) 6 A ( B / h )  and 

diStE(X(h), O,,,,t A( B/h ) ) --* 

we have for the shifted function 

4"c T + w T 

2111 ~- 

If B < Bo, the following hold: 

Given e > 0, there exist 6 > 0 and C < oo such that for all h > 0 

I t , ,  S/h ~. - .  r .  h(  X . .  B/J, ~ ~ ( - -  m ~- - -  e ,  - m * + e ) ) >1 1 - C e  -'~/h 

For each local function l a n d  each function x(-): (0, co) ~ 7/2 such 

as h h 0  (3.8) 

( O x l h ~ f ) A ~ S / h ) . _ T . h ~ ( f ) _ . r  as h' , ,0 (3.9) 

b. If B >  Bo, the following hold: 

1. Given e > 0, there exist 6 > 0 and C < Go such that for all h > 0 

flA(n/h), --, 7", h(XA[B/h) ~ ( m r ( B )  - -  e, n IT(B  ) q- e))  >i 1 - Ce-6/h 

where m r ( B )  is given by (3.5). 

2. Given e > 0, there exist ~ > 0 and C > oo such that if we denote by 
~,.~. the event that inside the box A(B/h)  there is an external ( - ) - c o n t o u r  
lying in the annulus between the curves yT(~n) B( l - - e ) /h  and 
yr(OCs) B(1 + e)/h and encircling the origin, while the length of each of the 
remaining contours is less than e/h, then for all h > 0 

/aA(Slh). - .  T.h(~,.~.) <<- 1 - -  Ce -=/h 

3. For  each local function f and function x(. ): (0, ov ) --* 7/2 such that 
the points hx(h) /B  lie inside yr(c~s) and 

lim infdist2(hx(h)/B,  7r(Cts)) > 0 (3.10) 
h'-.0 
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we have for the shifted function 

( Oxlh)f),,Bih~,_,r,h--* ( f )  +,: r as h '~0  (3.11) 

4. For  each local function f and function x(. ): (0, oo) --. 77-' such that 
the points hx(h)/B lie inside S(1) but outside yr(~B) and 

lira infdist2(hx(h)/B, yr(~B) • OS( 1 )) > 0 (3.12) 
h'-~O 

we have for the shifted function 

(O.,.~hlf),llS/h~._.r.h--+(f)_,r as h '~0  (3.13) 

The proof  of the theorem is close to the proof  of Theorem 1 of ref. 17. 
The main difference lies in the fact that here we have to consider the 
constrained Wulff problem, which was avoided in ref. 17 by considering the 
Wulff-shaped box. So in what follows we give the necessary geometric 
constructions which have to replace those of ref. 17. Namely, we first solve 
the constrained Wulff problem, then we establish the stability properties of 
the solution, and finally we state the results about the constrained Wulff 
problem for the more general case of the families of curves with possible 
intersections and self-intersections. These changes plus Theorem 1 above 
are all essential extra ingredients needed to modify the proof  of Theorem 1 
of ref. 17 to work in our case. 

4. C O N S T R A I N E D  V A R I A T I O N A L  PROBLEM 

Let 0 < 0c < 1 be a real number. We want to study the Wulff variational 
problem of finding a closed curve yr (e)  with a given area V(yr(00)=0c 
inside, which minimizes the Wulff functional (2.12) under the additional 
restriction that the domain of the functional is restricted to the curves 
belonging to a unit square S( 1 ) = { (x, y), - 1/2 ~< Ix[, 13'[ ~< 1/2}. We shall 
call this problem the constrained Wulffproblem. 

It is clear that for small values of the parameter  ~ the corresponding 
curve yr (e)  is congruent to the curve ~l/,_y~, where y~ is the Wulff curve 
which solves the unconstrained Wulff variational problem for curves of unit 
area. However, when e is close to one, the scaled curve 0d/2y~ would not fit 
into the square S( 1 ), so we have to look for a different solution to our 
problem. We have 

yr( oc ) = od/'-y~ (4.1) 

for 0c ~< l~-2. As we shall see soon, for the remaining values of 0c the answer 
is given by the following construction: 
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Let 0 < p < 1. Consider the curve pl~-I?~; it lies inside the square S(1). 
Moreover, the distance between the curve ply- i y~ and the boundary of S( 1 ) 
is (1 -p)/2. Hence each of the four shifted curves 

is tangent to two corresponding sides of the square S(I). Let zl,, be the 
convex closure of the union of these four shifted curves and ~, be its 
boundary, 

6~'=OA~'=O C~ [ pl~-iTr +( +--~-~' +-~-~)1 (4.2) 

It is clear that as p varies between 0 and I, the area V(Op) decreases 
continuously from 1 down to V(l~-~y~), so the definitions (4.1), (4.2) 
specify a family of curves with the area taking all values between 0 and 1. 

I.emma 1. The curve 6,, is the solution to our variational problem: 

~(V(~,,)) = ~,, 

That means that for any rectifiable, closed, self-avoiding curve 7 = S( 1 ) 
with V(),)= V(Op) for some p we have 

'/~(~,) >1 #'(~,,) 

with equality only if 7 = 6,,. 

ProoL For ), c S(1) a rectifiable closed self-avoiding curve, let LI~. = 
Conv(~,) be its convex closure. Then V(y) ~< ]LI~. l, while .Ill-(y)/> ~//"(0A~.) 
because of the triangle inequality. Therefore, we can restrict our search for 
the curves ),~(0~) to the subset of all convex curves ~ in S(1 ). If we include 
in ~ all segments and all single points of S( 1 ), then in the topology induced 
on it by the Hausdorff metrics, c~- is compact (Blaschke selection 
theorem)J 4~ The functional # is continuous on ~, which implies the exist- 
ence of the minimizing curves 7~(~). Hence each of the curves y~(~) is 
convex and contains at most four straight-line segments (which might be 
reduced to a single point in the limiting case), which are parts of the 
(different) sides of the square S(1), plus a corresponding number of arcs 
xl ..... lc t, 1 ~<I~<4, joining the endpoints of these segments. 

(I) We will show first that these arcs should be congruent to arcs 
of a certain Wulff shape bT~ with corresponding well-defined value of the 
dilatation parameter b, the same for all arcs K~ ..... KI, 1<<.4. (Here and in 
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the following we always are talking about the congruence according to the 
group of all shifts only.) 

To prove our statement, let us choose M to be an inner point of the 
arc K,., 1 ~< i<~ I, let r > 0 be any real number, and let A, B be two points 
on the arc K; at the distance r from M. We denote by ~c~s the part of ~c; 
between A, B. Let [A, B] be the corresponding chord, and K,~s be the 
corresponding segment (i.e., region bounded by the arc and its chord). We 
suppose that the point M is such that the arc KAs is not a straight segment 
for any value of 1", which implies that the area [K~B[ is positive. Such a 
choice of the point M is possible provided the whole arc ~c~ is not a straight 
segment. As we shall see in the next step of the proof, this possibility can 
be ruled out. The choice of the value of the parameter r - - r ( M )  will be 
made later, in such a way that both the length of the chord [A, B] and the 
area [K~s[ will be small enough. This is possible since both go to 0 with i". 

Now, it is easy to see that one can find a value b; of the dilatation 
parameter such that the Wulff curve bg),~ passes through two points A', B' 
with the following properties: 

(i) The chords [A, B] and [A', B']  are congruent (i.e., equal and 
parallel). Because of the convexity of the curve ~ ,  the property required 
holds for any Wulff shape by~ provided only that b is not too small. 

(ii) If we denote by KA,s, the corresponding segment of the Wulff 
body b~ W~, then the areas [K,~s[ and [K,~,s,[ are the same. (It is easy to see 
that the possible values of the area ]KA,s, [ cover all positive real numbers 
as b varies.) 

We claim now that the arc K,~B is congruent to the arc t(.4, B, of the 
Wulff shape biy~, at least when r is small enough. To see this, let us attach 
the arc K~s to the curve biy~ along the chord [A', B']  instead of the arc 
1cA,s,, and, vice versa, attach the arc K~, s, to the curve y~(~) along the chord 
[A, B] instead of the arc I,'~s (Fig. 4). In this way we still have two closed 
self-avoiding (because of the convexity) curves. If the congruence claimed 
does not hold, then the modified Wulff shape has the value of the Wulff 
functional strictly bigger than b # ( ) ,  0 (because of the uniqueness of the 
solution of thq Wulff variational problem). That implies that the value of 
the Wulff functional for the curve y~(~) after modification is strictly lower 
than ~#/'(y~(~)). That might happen only if the curve y~(~), being modified, 
does not fit inside the square S(1 ). However, if both the length of the chord 
[A', B']  and the area of the segment K,~, s, of the Wulff body are small, 
then the diameter of the segment KA, 8, is small as well, which rules out the 
last possibility for r = r ( M )  small enough. Since the curve y~ is strictly 



886 Schonmann and Shlosman 

jS 

jf 

Fig. 4. The result of the surgery. 

convex and smooth, the dilatations b7~ and b'yT can not have congruent 
pieces for b 4: b'. That  means that the value of the dilatation parameter  bi 
is well defined�9 Thus far we have proven that if the arc h'i is not a straight 
segment, then it does not contain any straight segment (since the Wulff 
curve does not contain any). Hence we also know by now that the whole 
arc xi is congruent to a part  of the Wulff shape biT~, since the arc h'i can 
be covered by smaller arcs, to which the above reasoning can be applied. 

What  remains to be seen is that the dilatation factors b; are the same 
for each of the arcs x .  1 ~< i ~ L 

To see this, let C, D be another pair of points on the arc iq,, i'~< I, 
different from x .  which has the same properties as the pair A, B. Consider 
the corresponding chord [ C, D]  and the corresponding segment Ken. The 
arcs h'AB, h'CD are, of course, disjoint�9 It is easy to see that if these arcs are 
small enough, one can find a value b of the dilatation parameter  such that 
the Wulff curve by~ passes now through four points A', B', C', D' with the 
following properties: 

(i) The chords [A, B]. [C, D]  and [A' ,  B ' ] ,  [C ' ,  D ' ]  are congruent. 

(ii) If  we denote by KA,n,, Kc,n, the corresponding segments of the 
Wulff body bW~, then the two sums of the areas ]K4s[ +[KcnJ and 
IK,4,s, ] + [Kc,n, J are the same. 

(iii) The segments KA,B,, Kc, o, are disjoint. 
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Indeed, consider the Wulff shape which corresponds to the value b 
equal to the smaller value of the two factors bg and b, .  Then (i) and (iii) 
are satisfied, provided only that A, B are close enough, as well as C, D. 
The property (ii) is violated if b ~ b , ;  moreover, IK,~,~,l+lKc,o,l> 
[K.~B[ + ]KcD [, since for fixed A, B the area rKA'B, J is a decreasing function 
of the parameter b. Increasing now the value of b would result in con- 
tinuous decrease of the value of the sum PKA'B'I + [Kc,o,[, while (i) and 
(iii) would remain satisfied. That proves the existence of the sought value 
of b. 

We claim now that the arcs ~"ns, Kcz~ are congruent to the corresponding 
arcs KA,B,, ~"C'D' of the Wulff shape b~,~. To see this, we have to attach the 
arcs I,'AB, KCD to the curve b~,~ along the chords [A', B'] ,  [C' ,  D ' ]  instead 
of the arcs x~,s,, Kc, o,, and, vice versa, attach the arcs ~CA,8,, ~"c'o' to the 
curve y,(ct) along the chords [A, B], [C, D] instead of the arcs I,~B, Kco. 
In this way we again have two closed self-avoiding curves, and the same 
argument based on the optimality of the Wulff curve shows the congruence 
claimed, which finishes the proof of (I). 

(II) Our next claim is that if A, B are now the endpoints of the arc 
K~, then the tangents to ~,'~ at these points coincide with the sides of the 
square S( 1 ). Supposing that this is not the case, and that the angle between 
the tangent line to x~ at A and the side of S(1 ) is ~b < n, we will construct 
a curve ~ with V(~)= V(y~(~)) = ~, while //"(~) < //:(y~(0~)); this contradic- 
tion will imply our statement. The construction of the curve ~ is performed 
in two steps: first we cut off a small portion of the curve y~(~) around the 
point A and replace it by a straight segment, obtaining thus the inter- 
mediate curve 9. Since q~ < n, that would decrease the value of the Wulff 
functional //" because of the Sharp Triangle Inequality. However, that also 
would make the area smaller, so we then enlarge the curve ~ in a certain 
way, to bring its area back to the starting value of ~. An easy check will 
then show that for the final curve ~ the value of the Wulff functional #~(~) 
is still smaller than the initial one. 

Actually we will construct the whole family of intermediate curves ~,., 
depending on the small parameter r, the value of which will be chosen later. 
Let C, D be two points at which a circle centered at A with radius r inter- 
sects the curve Yr(~); for r small enough there are indeed exactly two points 
in this intersection. Suppose first that the intersection of the curve ~,r(~) 
with the square S(1) contains a component which is a segment [A, A'] ,  
with the point A as its endpoint. Let C be the point belonging to the 
boundary of the square S( I ), while D be the one belonging to the arc ic,. 
The curve )7. is obtained from y~(~) by removing from it the union of the 
arc K.~. D and the straight-line segment [A, C] and by adding the straight 
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line segment [C, D]. We denote by gl the union [C, D] w x o ,  B. It follows 
now from the Sharp Triangle Inequality that 

r  ~tr(,Z.) = C~(q~)r+ O(r 2) (4.3) 

as r ~ 0 ,  with C~(~b)>0 for ~b<n. Also 

V(r,(~)) - V(f,.) = Cz(O) r 2 + O(r 3) (4.4) 

with C,_(~,b) > 0. 
Now we are going to enlarge the curve )7. back to the area c~. To do 

this we introduce another family of curves 77~i in the following way. We 
suppose additionally at this moment that the point A belongs to the top 
horizontal side of S(1), while B belongs to the right vertical side; the 
remaining cases are studied in the same manner. Consider now the shift of 
the arc ~l by a vertical vector (0, s) with s > 0 small; let E be the intersec- 
tion of the shifted arc g~ + (0, s) with the top horizontal side of S(1), and 
J;:] be the part of this shifted curve inside S( 1 ). The curve )7;'i is defined now 
by 

?7.;= (f,.\ff,) w [B, B +  (0, s)] w g "  i w [C, E] 

Let C3= 1/2-A.,.,  where A,- is the horizontal coordinate of the point A; 
this positive quantity C 3 is just the distance between A and the upper-right 
corner of S( 1 ). Then 

V(f~) - V(;,.) = ( C3 + r) s + O(s  2) (4.5) 

and also 

0 ~ "~//'I ())'s,) --"['ff'(~r) ~ C4S (4.6) 

where C 4 can be taken equal to 2 max r, as can be seen from the Sharp 
Triangle Inequality. Our choice for '2 is that (see Fig. 5) 

where s = s ( r )  solves the equation V(~)=0~. Hence by (4.4) and (4.5) the 
function s = s(r)  should satisfy the relation 

(C3 + r) s + O(s  2) = C,_(~b) r'- + O(r 3) 

which implies that s(r) = O(r'-) since C3 > 0. Together with (4.3) and (4.6) 
this implies that "/r  with the last 
expression negative for small values of r, which provides the contradiction 
that proves our statement. 
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Fig. 5. ), --* 5r--+ 9. 

C ~  

The case when the segment I-A, A'] is reduced to the point A can be 
treated completely analogously. 

(III) The same cutting and enlarging argument shows that no corner 
of S(I)  can belong to 7~(e) for ~ < 1. 

Combining (I)-(III),  we obtain that I = 4 .  That ends the proof of 
Lemma 1. | 

For  future use in the proof of Lemma 3 we note that the proof above 
can be modified in the following way: instead of the point B, we were able 
to use any other point B' on the arc h'~ between A and B. 

5. STABILITY PROPERTY OF THE CURVES V,(Ca) 

In this section we prove the analog of the stability property of the 
Wulff functional given by the formula (2.4.1) of ref. 7, for the case of the 
constrained variational problem treated in the preceding section. Theorem 
2.4 of ref. 7 states that for any curve y E ~ surrounding a region W of unit 
area, IV[ = 1, y = 0V, there exists a point x = x(7) e ~2 for which 

[ ,~ (y)2  _ ~ (7~)-" ] t/2 
Pu(Y, Y~ + x )  ~< 8 .r162 max, r(n) 

That estimate implies that the curve y is close to a translate of 7~, provided 
the value of the Wulff functional # (} , )  is close to tlr(7~). We prove a 
similar statement for the solution of the constrained variational problem. 

L e m m a  2. Let 1 > ~ > / ~  -z and let e, 6 be positive numbers. Let 
i' c S( 1 ) be a rectifiable closed self-avoiding curve with cc - e ~< V(y) <~ ~ + e, 
tl~[ y~(~)] - 6  ~< ~/r (7) ~< -/r + 6. Then 

PH(Y, yr(0C)) ~< <~(~, g, ~) 

where ~(~, u, v) is a continuous function and ~(0c, 0, 0) =0.  

N o t e  1. In fact, Lemma 3 below implies after some straightforward 
calculations that 

~'(~, u, t,) <~ const �9 (u + x/~) (5.1) 

,22/83/5.6- 7 
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r 

Fig. 6. Diagrams of y~(ct, x) for different x. 

Noto 2. The same statement is of course true for the remaining 
values ~ ~</r 2, but then one needs to allow the curve 7 to be shifted. In our 
case we do not need any shifts since the position of y is fixed by the sides 
of the square S(1). 

To prove Lemma 2 we are going first to solve another variational 
problem, also concerning "r-shortest" curves within S(1), surrounding a 
given area. Namely, let ~ have the same meaning as above, and x e S( 1 ) be 
a fixed inner point. We are looking for the curve y~(~, x) which solves the 
same variational Wulff problem formulated in the first paragraph of the 
preceding section, under the constraints that the curves over which the 
minimum is taken (i) belong to S(I) ,  (ii) surround the area which is equal 
to ct, and (iii) pass through the point x. 

We call the last problem the point constrained Wulffproblem. 
It turns out that for certain values of a and x the point constrained 

Wulff problem has no solution in the class ~ ,  so one has to extend this 
space to get one. We obtain the relevant extension ~ of ~ by relaxing the 
requirement of self-avoidness. Namely, the family ~ consists of curves 
6 c R 2 which can be represented as unions 

c ~ = T u n  (5.2) 

with y c N-" to be a closed self-avoiding rectifiable curve, and n to be a 
path, attached to 7, so that the intersection yr~ n consists of exactly one 
point, which is an endpoint of n, If n consists of just one point, then we 
recover the initial space ~.  In general the points of the path n are the 
double points of the curve ft. Such curves are cont inuous--but  not 
homeomorphic- - images  of the circle N' (see the middle part  of Fig. 6). 
Naturally, the set of double points should contribute twice to the value of 
the Wulff functional, so we define the extension of the Wulff functional to 
this larger space ~ by 

r162 tin,.)ds+2 r(,,) as 15.3) 
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Lemma 3. Let 0t>lr -2. The curve y , (a ,x)  has the following 
structure: 

(i) For  some point y e S(1) the curve y~(c(, x) contains the segment 
Ix, y ]  as the set of its double points (the case x = y  is not excluded). 

(ii) The complement y,(a,x)=y,(o~,x)\[x, y) is a simple closed 
Jordan curve, smooth everywhere except possibly at y. 

(iii) The curve ,~,(a, x) contains segments I~ ..... I ,  of the sides of the 
square S(1 ), with k ~< 5 [the side closest to y can contribute two disjoint 
segments to y,(0c, x)] .  

(iv) The complement y,(a, x)k(U~Ij u {y}) consists of k +  1 arcs 
which are congruent to arcs of the Wulff curve 2y~ with the same dilatation 
factor 2 = ;t(a, x). 

(v) If x # y, then the segment [ x, y ]  is tangent to the two Wulff arcs 
which terminate at y. 

We first give the proof of Lemma 2, using Lemma 3, and then prove 
Lemma 3, presenting first a heuristic proof, followed by the proper one. 

Proof of  Lomma 2. It is easy to see that the functional ~C(7~(0c, x)) 
is a continuous function of the parameters 0c and x, which vary over a com- 
pact set. For  example, the continuity in x follows from the simple estimate 

r (y~(0c, x)) - ~(y~(0c, z)) ~< 2 max r IIx- zll2 (5.4) 

which one gets by connecting the point y with the curve y~(0c, x) by a 
double segment [x, y] .  [Note,  however, that as a function of x the curve 
y~(0c, x) is discontinuous. It has discontinuities at some x on the diagonals 
of S( 1 ), where the curve y~(0c, x) is not unique.] Because the solution of the 
constrained Wulff problem is unique (contrary to the point constrained 
problem), the difference r x))-~/Cr(y~(00) stays positive, provided 
x ~ y~(0t). Hence there exists a function D(0c, p) which is continuous jointly 
in 0c and p and which is positive for positive p such that 1V(y~(0c, x ) ) -  
.1r (y~(00) > D(0c, p) as soon as dist(x, y~(00) > p. Without loss of generality 
we can assume that D(0c, p) is monotone in p for each 0c. From the 
optimality of the curves y,(0c, x) it follows in particular that if 

p.(y, y~(v(y))) >:p 

then 

~///(y) -- ~F(y~(V(y))) > D(V(y), p) 

822/83/5-6-7* 
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Let us introduce the functions 

dl(oc, oc') = pa(7~(cc),  7,(~x')) 

d-,(oc, ,x ' )=  I.r162 (~,~.(,x))- 'r162162 I 

It is clear that they are continuous and that d~(~, ~'), d2(~, ct') ~ I ~ -  ~'1 ~ 0 
a s  0~ ~ ~ 0C. 

Let now the curve ), satisfy the conditions of Lemma 2. Then 

i~HJ-(y)_ ,r162 v(y)))l ~< ~ + d2(0c + e, 0c-e)  

Hence 

PH(Y, Y~(V(y))) <~ D-~(V(y), ~ + d2(0c +e,  ~r e)) 

where D - l ( . , .  ) is the inverse function in the second argument. Finally 

PH(Y, )J~(~)) <~ PH(Y, Y~(V(y))) + dl(~ - e, ~ + e) 

which proves the lemma. 

Note 7. Actually, the only information from Lemma 3 which is used 
in the proof of Lemma 2 is the continuity of the function .r162 x)) and 
the positivity of the difference '#'(),r(a, x))-'#/'(y~(~)) for xCyr(~). Both 
statements seem to be almost evident, and the natural approach is to try 
to prove Lemma 2 without using Lemma 3, by introducing instead of the 
function "#'(y~(~, x)) the function 

r x)) = inf 'r 
), ~ c.c.c.c.c.c.c.c.c.Cd: ) ' c S (  I ), 
x e ) ' ,  V(),} = ~ 

The continuity of this function follows from the analog of the estimate 
(5.4). However, the positivity of the difference '~Y(y~(~, x ) ) -  'r is 
not at all obvious, due to the infinite dimensionality of the space of all 
curves ~.  Lemma 3 allows us to pass to the finite-dimensional submanifold 
of ~ formed by all curves y,(~, x), and the positivity statement follows then 
from continuity of the function "~q/'(y~(oc, x)) and the uniqueness of the 
curve ~,~(~). 

Note 2. The explicit information about the curves y~(0c, x) provided 
by Lemma 3, implies easily that 

D(ct, p) ~> const �9 p2 
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Heuristic Proof  o f  Lemma 3. The physical picture mentioned before 
the proof of Lemma 1 in the previous section is helpful here as well. We 
can get the shapes of the curves ),~(=, x) by the same pumping picture; this 
time, however, the box S(1) should be supplied with a nail, hammered in 
at the point x. So from the moment when the balloon starts to touch the 
nail, it begins to envelope it. If the pressure is high enough, the parts of the 
balloon meet each other behind the nail and form a double straight layer 
(to the point y). However, it might happen that the pressure would be 
already high enough for the volume of the balloon to have the necessary 
value while the nail at x is still outside the balloon. Then the procedure has 
to be reversed: one should start from the infinite value of the pressure, 
when the balloon is forced to occupy the whole box S(1), and then lower 
the pressure to the value needed to give the necessary value to the volume. 
Meanwhile the balloon would meet the nail and would hang on it for the 
lower values of the pressure (this time without the double layer). 

Proof o f  Lernma 3. As in the proof of Lemma 1, we have to start 
with a statement about the existence of the minimizing curves. The idea is 
again to show first that there exists a compact subspace cg ~ N such that 
for every ~ e ~ one can find some 6 e c~ such that 

,,/r ~< ~/J'(,~), V(~) >~ V(~) (5.5) 

with 'It" continuous on ~. That will imply the existence of the minimizer. 
This time the trick of replacing ~ by a/f6, where A6 = Cony(6), does not 
work in general, since the curve 0,J6 might not pass through the point x. 
Nevertheless, if x e 0A6, then we define ~= OA6. 

Suppose now that x~0A~. Then the curve aA6 contains a segment 
l-A, B] with A, Be~ such that the removal of the segment [A, B] from 
c5 w 0A6 disconnects the point x from the rest of c3A6. Let h'AB ~ ~ be the arc 
of 6 between A and B, containing x, and KAB=OzJ,~\[A, B]. The arc KA~ 
can be split further into h'~8 = h'~.,- w K,.B. The curve c~ is built now from 
three pieces: 

d =  KAB w K,4.,. u K,.8, (5.6) 

where the arcs KA.,., K.,.B are convexifications of the arcs x~.,., K,.s. Their 
construction, as well as the validity of the properties (5.5) are most easily 
seen from Fig. 7. Note that the intersection K~.,. c~K,. B, apart from the 
point x, consists in general from the nonzero straight segment l-x, y ] ,  so in 
the representation (5.2) for 3 we will have in the obvious notations, that 

Y = Y(6)=KAz~ wKA.v wK,,B (5.7), 
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Fig. 7. Convexification of the arcs KA.,., r.,.s. As we proceed from (a) to (e) both the length 
and the Wulff functional of the curve decrease, while the area inside grows. In going from (c) 
to (d) we convexify the arc ACx, using the support line Cx. We then convexify the arc BDx, 
using the line Dx. Note, that part of the (convex) arc ACx disappears. 

while ~ -- [x,  y ] .  In the limiting case y = x, and we will also use it as a 
convent ion in the case when x e OA~, which was described above. We also 
define y ( 6 ) =  ~ in that case. 

In order  to show that  the resulting family ~Y of  curves 6, defined by 
(5.6), is compact ,  we are going to construct  an embedding E of  it into 
another  compact  space as a closed subspace. This new compac t  space will 
be the product  H = J x cs x ~f, where ~f was defined in the beginning of  the 
p roof  of  Lemma 1 as the space of  all convex curves in S(1), together with 
their limits, which are segments and single points o f  S(1), and J is the 
space of  all segments and single points of  5'(1). The compactness  of  H 
follows from the Blaschke selection theorem. To  specify the embedding 
E: ~ H we will specify three maps  Ei from c~ to the corresponding 
factors. The map E l is easy: 

E l ( ~  ) = I x ,  y ]  e ,if; 

We construct  the remaining two maps  by cutt ing the shape surrounded by 
y(•) into two convex bodies. To do it in a cont inuous  manner ,  let us 
consider all support  rays to ),(S) at y and take the two extremal ones, r~ 
and r2. [ I n  the case when ~(S) is not  convex, we take the support  rays to 
the convex arcs KA.,, and K,,s.] The line bisecting the angle between r~ and 
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r2 cuts the shape surrounded by 7(d) into the left and right halves which 
are convex. That ends the proof of the compactness. The existence of the 
curves 7~(a, x) is thus established. 

Let now A, B be two points on 7~(a, x) which lie on the same side of 
the square S(1). Suppose that the portion of 7~(~, x) between A and B does 
not pass through x. Then the triangle inequality implies immediately that 
the above-mentioned portion has to coincide with the segment [A, B]. 
That proves (iii). 

Statement (iv) is a repetition of the first half of the proof  of Lemma 
1 from the previous section. 

The smoothness properties (ii) and (v)--i.e., the statements that 
the curve 7,(~, x) has no angles at its joints--are obtained in the same 
manner as the corresponding statement in the same lemma of the previous 
section. 

Statement (i) that the double point portion of the curve y~(a, x) 
between x and y has to be a straight segment follows immediately from the 
triangle inequality. 

6. C O N S T R A I N E D  W U L F F  P R O B L E M  
FOR FAMIL IES  OF C U R V E S  

In this section we consider the modification of the above problem to 
the case of several curves with possible intersections. Let )7= { 71 ..... )~,,} be 
a family of closed rectifiable curves in S( 1 ). We define its Wulff functional 
as the sum 

~ ( f ) = ~ ( ~ , ) +  . . .  + ~r 

In order to define the volume of the family )7, we suppose additionally that 
the curves 7, are piecewise smooth and that the complement R2\ u 7i has 
finitely many connected components. The relevant notion of volume in our 
context turns out to be that of the "phase volume" as defined in Section 
2.10 of ref. 7. This definition is as follows. The set R2\ u 7i splits up into a 
collection of connected components Q~ with exactly one unbounded com- 
ponent among them. A component Q~ will be called a minus component if 
any path that connects its interior points with points of the unbounded 
component and intersects the curves from )7 in a finite number of points of 
smoothness intersects them in an odd number of points (counted with mul- 
tiplicities). The phase volume of )7 denoted by l~(f), is defined as the joint 
volume of all the minus components. We are now in a position to state the 
analog of Lemma 1 for the case of the collection of curves. 
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Lemma 4. Let 1 > ~ >/~ -2, and let e, 5 be positive numbers. Let )7 
be a collection of rectifiable closed curves in S(1) with a - e  ~< 1;'()7)~< ~ + c, 
# / ' [7~(~)] -5~<~(~7)~< '$ tF[) ,da) ]+6.  Then there exists an index j, 
1 ~< j ~< n, such that for the corresponding curve 7j 

PH(Yj, yr(ar ) ~ C~(~, ~, 6) 

while for the remaining curves we have 

Z I~',1 ~<~'(~,~, ~) 
i~j 

Here the function ~ satisfies the same bound (5.1) of the order of e +x /~ ,  
while the function cg, satisfies 

r u, v) ~< const~ �9 (u + v) 

The proof of this statement is a repetition of the proofs of Theorems 
2.9 and 2.10 from ref. 7, and will be omitted. 

7. V A R I A T I O N S  ON THE RESULTS OF IOFFE 

The proof of Theorem 1 in ref. 17 as well as the main result of the 
present paper rely in part on results obtained and ideas introduced by 
Ioffe/~~ ~ Theorem 1 formulated above does not follow formally from 
results of refs. 10 and 11, though by using Ioffe's techniques one can obtain 
it with some extra work. We prefer an alternative approach, which is in 
part just an easier way to implement Ioffe's strategy and in part a simpler 
alternative technique. The former part refers to the upper bound, while the 
latter one refers to the lower bound, which together give the proof of 
Theorem 1. 

The proof of the upper bound in ref. I1 is based on (i), the extension 
of Pfister's estimate of the probability of observing a large contour with a 
given skeleton (see Lemma 10.1 of ref. 13) to all temperatures below the 
critical, and (ii) the study of the conditional Gibbs measures conditioned 
by the event of absence of large contours. 

An easier way to estimate the probabilities of large deviations under 
these conditional Gibbs measures is presented in the Appendix to ref. 17. 
Together with our Lemma 1, this gives the upper bound. 

In what follows we present our alternative approach to the lower 
bound. First, we introduce some extra notations. 

Given a bounded set U c  R 2 and l > 0 ,  we will use the notation 

IU= {/x: x~ U} 
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and 

A ( U )  = 7/2 N U 

We will be considering the Gibbs measure for the system in the box A ( I U )  
with ( - ) boundary conditions, where l is thought to be large. The set U, 
which gives the shape of the box, can be quite general; we will suppose that 
it is normalized so that its volume is 1 and that its boundary is a rectifiable 
curve. Under these conditions, 

IA(IU)[ = l 2 + O( l )  

T h e o r e m  3. Suppose that T <  T,.. Then for every convex V c  U we 
have 

1 
lim sup -- -~ log p A~tU~. - ,  r, o( X ~, lu~ >1 m )  <~ fl~/'r( O V) 

for all m < I V I m ~ +  (1 - I VI ) ( - m ~ - )  = (2 IV] - 1 ) m~. 

The lower bound part  of Theorem 1 follows from Theorem 3 applied 
to the case when U = S(1), V =  Int yT(~), 0 < a < 1. 

Theorem 3 follows at once from the following lemma. 

Lemma 5. Suppose that T<T, . .  Then for every Vc  U whose 
boundary is a polygonal line and which satisfies 

dist2(V, U " ) > 0  

we have 

I 
lim sup - -] log P AtlU~, - .  r. o( X Atm) >t m )  <~ f l # ' r (  O II) 

/~cc-, 

where m =  IV] m * + ( 1  - [  V] )( - m * )  = (2 I V I -  1)m~. 

Proof .  We will denote the ordered vertices of V by x] ..... x,, and use 
the convention that x , , + l = x l .  If  we denote by n~ the unit vector 
perpendicular to the edge which joins the vertices xg and X~+l, oriented 
outward from V, say, then 

~FT(aV) = ~ ~T(ni)Ilxi+l--xill2 
i=1 
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Given e > 0  small enough [2e<dist2(V, U") is what we will need 
below], there exists ~ > 0 so small that we have 

a AIm~. --. r. O( X ~,V~ >1 m )  

>~ltA(m), - ,  7", o ( X A ,  I +,)1tO >1 m * (  1 - -  e))  

- - P A ~ t v ) . - , r . o ( X A ( I v ) \ , ~ , l + , ) t v )  < - - m * - -  J) (7.1) 

For  the second term in the right-hand side we can simply use inequality 
(4.8) in ref. 11 [which can be applied since for small e we have 
[ A ( I U ) \ A ( (  1 + e) IV )  [/l 2 > J'  > 0, for a l l / ] .  This inequality gives 

PA(IV). - ,  X o ( X m l ~ \ A , I  + ~) tV) < --  m * - -  J) ~< C] e - c+' 

Our task is therefore reduced to proving that the first term in the 
right-hand side of (7.1) satisfies 

1 
lim sup - -] log lt mv)" - ,  r, o (XAl l l  +El IVl >1 m * (  1 --  e))  <~ W ' r ( O V )  

/ ~ o v  

(7.2) 

For  this purpose we will use the Fortuin-Kasteleyn random cluster model 
(see ref. 3 for a detailed, mathematically rigorous presentation and 
references to the origins of the model) and the coupling between this model 
and the Ising model Gibbs measures, as introduced in ref. 9. We start by 
reviewing the basic definitions and facts, and refer the reader to the two 
papers just quoted for the complete proofs of the claims. We will be using 
definitions (2.2)-(2.5). 

The Fortuin-Kasteleyn random cluster models assign probability 
measures to configurations of occupied and vacant bonds. Two different 
measures will be of relevance to us: the FK measures with free and with 
wired boundary conditions. Given F c c Z / 2 ,  one introduces the FK 
measure with free boundary condition on {0, 1} Br, where the l's are 
associated with occupied bonds and the O's with vacant bonds. One 
proceeds as follows. We say that two sites x and y are connected in the 
configuration r/e {0, 1} Br, if there is a chain of sites x = x , , x 2 ,  . . . , x , , _ ~ ,  

x , , = y  in F so that {xi, x,-+l} is occupied in the configuration ~1 for 
i = 1, ..., n -- 1. We use the notation A ~ B to denote the fact that some site 
in the set A is connected to some site in the set B, and if A or B is a 
singleton, then we replace the set by its single element in this notation. 
Clusters are maximal connected sets of sites. To each configuration 
~/~ {0, 1} Rr we associate three numbers: a(r/) is the number of occupied 
bonds in r/, b(~/) is the number of vacant bonds in ~/, and Crree(~/) is the 
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number of distinct clusters of sites in r/. For  each p ~ [ 0, 1 ], the probability 
measure ~A. rr~.p is then introduced as 

~,4. rree. p(q) 0(2 p"~")( 1 __p)b~,1)2~r~(.~ (7.3) 

The FK measure with wired boundary condition on the set F c c Z  2 is 
defined on the set {0, 1} ~r. One considers again the clusters into which 
each configuration partitions F, but special attention is given to the sites 
which are connected to sites of OextF. The clusters that contain sites in 
Oext F are called boundary clusters and the other ones are called inner 
clusters. Cwired(~/) is the number of distinct inner clusters of sites in q. For  
each p ~ [0, 1 ], the probability measure ~r. wired, p is then introduced as 

~i~F, wired, p(F/) OC p"~'ll( 1 __p)b~,l~ 2,',i,~,, 

The FK probability measure with wired boundary condition on F is 
related to the Gibbs measures Pr.  - .  r.o and Pr, +. 7".0, with p and T being 
related by 

p = l - - e - P  

On the other hand, the FK probability measure with free boundary 
condition on F is related to the Gibbs measure Pr, o, r. o, which corresponds 
to taking as boundary condition outside of F spins which take the value 0, 
or equivalently, supposing that the lattice is just the finite set F and that 
there are no sites outside this set. Two basic relations are: 

1. For  a l l x e F  

. 

~F. wired, p( X ~''~ 0 e x t F )  = ( O'( X ) ) F. +. T, 0 

For all x, y ~ F 

~r, , , .p(x ~-~ y )  = ( a ( x )  a ( y )  ) r .o.r .o 

(7.4) 

(7.5) 

where either a is wired and b is ( - ) or ( + ), or else a is free and b is 0. 

Further relations between the FK measures and the corresponding 
Gibbs measures can be obtained via the coupling introduced in ref. 9, 
which we desc~'ibe next. First we consider ~r. rroe.p(r/), and for each cluster 
of sites we choose either the value + 1 or the value - 1, independent of the 
previous random choice of the configuration and independently from 
cluster to cluster. If to all the sites in each cluster we assign spins which 
take the common value chosen for this cluster in this procedure, we obtain 
a random configuration on { -  1, + 1} r. The law of this configuration 
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happens to be exactly l i t ,  o, T.o. We will use Pr.o. r to denote this coupled 
probability measure on {0, 1 } Br x { - 1, + 1 } 1-. Similarly, if we start with 
~r ,  wircd.p(~) and assign values for the spins at sites which belong to inner 
clusters in precisely the same way as above, but set all the spins at sites 
which belong to boundary clusters as - 1  (resp., + 1 ), then we obtain a 
random configuration on { - 1, + 1 } r with law/~ i", -,  7", o (resp-, it r, +, r, o). 
We will use P r . - ,  r (resp. Pr,  +, r) to denote this coupled probability 
measure on { 0 , 1 } B r x { - 1 ,  + l } r  

Finally, we review the duality relations used in ref. 5. The dual lattice 
is Z ,  = Z 2 +  (1/2, 1/2), and the set of dual bonds is 

B * = { { x , y } ' x , y ~ Z ~ a n d  I l x - y l l ~ = l }  

There is a natural one-to-one mapping between fi$ and B*, given by 
{x, y} * = { u, v} in case the straight-line segments joining x to y and joining 
u to v intersect each other in their middle point. We will need to consider 
a slight generalization of the measures ~r, free, p; given g c B r ,  we define the 
probability measure ~r ,e~ , f r~e ,p  on {0, 1} ~ by the same formula (7.3); in 
particular, N r .  Br~, free, p = "~F, f r ee ,  p "  Given F c ~  7/2, we define 

F * =  { u ~ Z . :  {u, v} = Ix, y}* for some v e Z .  and {x, y} e B r }  

In other words, F*  is the smallest subset F '  of Z .  such that (Br)*  c B r ,  , 
but observe that these two sets do not need to be identical. Each configura- 
tion 11 s {0, 1 } Br induces a configuration 

r /*s{0,  1} a~" 

by declaring the dual bonds to be occupied or vacant when the corresponding 
bond in ~ r  is, respectively, vacant or occupied. In this fashion the measure 
~r ,  wi~ed, r induces a probability measure on the set of configurations on the 
dual set of bonds. This measure turns out to be precisely -~r*. ~Brm. tree, p*, 
where 

2 - -2p  p*= 
2 - p  

If we write p = 1 - e  -/j and p* = 1 - e  -/j ' ,  then this relation is equivalent to 
the Krammer-Wannier  duality relation 

e = tanh 

which defines f l*=fl*(f l )  as a strictly decreasing function with the unique 
fixed point fl.. = 1/T,. .  
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N o w  w e  are ready  to  g o  b a c k  to  the  p r o o f  o f  (7.2) .  W e  i n t r o d u c e  the  
event  

= { O~n,A((l + e ) / V )  ~ OextA((l + 2e) IV)} " 

Clearly 

l l  A(IU). --. 7". o( X . (  ( I + ~) zv~ >t m ~  1 - -  e ) ) 

P A(zuI, - .  T ( X A ( ( ,  +~)zv)  >1 m * (  1 - -  e)  I ~ )  P A(zu). - ,  r ( ~ )  

Therefore  we will be finished once we show that  

PA(IU). --,  T (X 'A{( I  + t:)IV) ~ 11~/~( 1 - e) I if) >/1/3 (7.6) 

for large l, and that 

sup - 1 log PA(tU), - ,  r(aJ) ~< ~tr(O V) (7.7) lira 
l 

To show (7.6), we let 

= {x ~ A(( 1 + 2e) 1V):  x +-* O e x t A ( (  1 + 2e) IV)} 

and we let { if=} be the part i t ion of  ff according to what  cg is. Fo r  each c~ 
let 

r'(~) =.4((1 +2e)lv)\cg~ 

where cg= is the set cg for configurations in if=. Clearly, for each cr 

A((1 + e ) l V ) c r ( o O  (7.8) 

For  this reason we obtain, from the way the coupling PA( lu) . - , r  is 
constructed,  that for each c~, 

P A~zu). - ,  T ( X A ,  I +~)IV) >>" m * ( l  -- e) [ f~) 

= I t r ( ~ ) .  0, 7-, o(X..f(( l +~)Iv)~> m * (  l - e))  (7 .9)  

The same argument  used to prove Theorem 2 in ref. 5 shows that, because 
(7.8) is satisfied, we have 

/ tr(~),  o. r. o(XAI(I +~)Iv) I> m*( l  -- e)) ~ �89 (7.10) 

uniformly over ~, as I--, oo. The estimate (7.6) follows from (7.9) and 
(7.10). 
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Now we turn to the proof of (7.7). First observe that the event f# can 
be seen as stating the presence of an occupied dual circuit inside 
[A((1 +2e) IV)\A((1 +e) IV)]* which surrounds A((I +e)  IV). We will 
estimate from below the probability of the presence of such an occupied 
dual circuit, by constructing it from pieces which lie close to the corre- 
sponding edges of ( 1 + e) IV. For this purpose define V; as the quadrilateral 
with vertices (1 +e)xi, (1 +e)xi+x, (1 +2e)x,.,  and (1 +2$)Xi+ I. Note 
that we can take n sites xz(l) ..... x,,(1) in Z ,  with the properties that: 

1. The Euclidean distance between each xi(l) and the point 
(1 + (3/2) e) lx~e II~ 2 is bounded above by I. 

2. x,~[A(IV,_,)]* c~[A(IV~)]*. 

Let if,. be the event that there is a path of occupied dual bonds which 
lies in [A(lVA]* and connects xAl) to xi+ ~(1). Using the FKG inequalities 
for the random cluster model, we obtain now 

P A([UL --, T ( ~ )  ~ ~([A(IU)]*, [BAtlV)]*), free. p* "~i 
i I 

>I fi ~tA.u~r. Ea.,.~.,r~. free. p'(~') 
i=t 

(-[ ~tJ,.v,,r. fre~.p'( N) 
i = l  

To estimate each term in the right-hand side we use (?.5) and write 

"f~[ At/V,,]*, free. p ' ( ' ~ / )  = ( O ' ( X / ( / ) )  O ' (Xi+ 1 ( l ) ) )  [A~IVi~]'. O. T*. 0 

The same method used to prove Lemma 6.3 in ref. 13 gives the following 
result, which is a simple generalization of that well-known lemma: 

1 
lim 

I ~  [ I x i ( l ) -X i+ l ( l ) l [2  

x log(a(Xi(1)) O'(Xi+l(l)))[AtiVi~].O" T*,O =flrr(ni) 

Combining the last three displayed statements, we have 

sup - 1 log P(ff) ~< ( 1 + (3/2) e) fl~Ur(O V) lim 
/ ~ ~zr 1 

from which (7.7) follows from the arbitrariness of e. This completes the 
proof of Lemma 5. 
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8. THE PROOF OF THE M A I N  RESULT 

As mentioned above, the proof of Theorem 2 goes along the same lines 
as the proof  of the Theorem 1 of ref. 17. The only statement that requires 
some additional arguments is the statement b.4 about the appearance of 
the ( - ) - p h a s e  in the vicinity of the corners of the box A(B/h)  for B > Bo, 
which statement was avoided in ref. 17 by considering the Wulff-shaped 
boxes A(B/h) instead of the square boxes A(B/h).  The second difference-- 
the statement in part b.2 about the shortness of all other contours except 
the one living in the annulus between the curves yr(~s)  B ( 1 - e ) / h  and 
yr(~B) B(1 +e) /h--requires  no extra work. Indeed, the stability result of 
ref. 7, used in ref. 17 to derive part b.2 of Theorem 1 of that paper, deals 
exactly with the situation when a family of curves surrounds a total phase 
volume larger than or equal to 1, and whose Wulff functionals add up to 
an amount flWr+~C that is not much larger than the minimum possible, 
flwr. The stability statement claims then that there must be a curve in this 
family which, modulus a translation, is close in Hausdorff distance to a 
Wulff curve which surrounds a volume 1, while the total length of the 
remaining curves is of the order of K. In ref. 17 only the first half of the 
statement was used, which implied the statement about the largest contour; 
the second half gives the statement about the contours remaining. 

In the proof below of part b.4 we will use statements a.2 and b.2 of our 
Theorem 2. The idea of the proof  is first to show that the support S~,,. of 
the shifted function 0,-~hfwith overwhelming probability is situated outside 
the large contour of part b.2, which surrounds the central part of our box. 
We then show that with the same high probability this support S.r.. ,. is 
encircled by a (*)-circuit of ( -  )-spins of relatively small size, and that 
allows us to apply part a.2 of the theorem to prove the convergence to the 
( - )-phase. 

To implement the program we start by introducing explicitly the value 
d of the lim inf from the relation (3.12): 

d = lim inf dist2(hx(h)/B, y r(ocs) w OS( 1 )) 
h'..O 

In our use of part b.2 of Theorem 2 the value of the parameter e will be 
supposed to satisfy 

d 
E ' ( - -  

3 

Let us introduce the set ~- of configurations a in A(B/h)  for which the 
size of any contour F of a, such that Int(F)c~Sr.x v~ ~ ,  does not exceed 
e/h. By part b.2 we can state that 

PA~S/hl, - ,  7", h('~) > 1 -- Ce-,~/h 
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for some C and ~. Hence for any configuration a ~ f f  there exists a ( * )-circuit 
of ( - ) - sp ins  which surrounds the set So.,- and lies inside the box 
A ( 2 e / h ) + x ( h ) ,  provided h is small enough. Let us partition f f  according 
to the outermost such circuit lying in A ( 2 e / h ) +  x ( h ) ,  and use the notation 
{ ~ }  to denote this partition. Using a self-explanatory notation for condi- 
tional expectations, from the Markov property and the FKG-Holley 
inequalities, we obtain for each 

(0.,.i,nf I ~ ) . , ~ B / , , , .  - .  7".1, <~ ( O,. , , ,J) , , ,2~/, ,~+., . ,h~. - .  7".1, 

= ( f )  .~,l'-~/m. - .  7". h (8.1) 

Now we can invoke part a.2 of our theorem, which tells us that the 
r.h.s, of (8.1) goes to ( f ) - ,  r as h ~ 0, provided 2e < B o. That  provides us 
with the upper bound for the limiting value of the expectation 
( O , . , , ~ f  ) A~ B/h~. - .  7". h. The complementary inequality 

< 0.,.,h,f> ,,, Bib,. - .  7". h >~ < f >  -.  r 

follows immediately from the FKG-Holley inequalities. 
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